Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High rate electron cyclotron resonance etching of GaN, InN, and AlN

Identifieur interne : 01B738 ( Main/Repository ); précédent : 01B737; suivant : 01B739

High rate electron cyclotron resonance etching of GaN, InN, and AlN

Auteurs : RBID : Pascal:95-0515323

Descripteurs français

English descriptors

Abstract

Electron cyclotron resonance etch rates of GaN, InN, and AlN are reported as a function of pressure, microwave power, and radio-frequency (rf) power in a Cl2/H2/CH4/Ar plasma at 170 °C. The etch rates for GaN and InN increase as a function of rf power. At 275 W, the etch rates reach maximum values of 2850 and 3840 Å/min, respectively. These are the highest etch rates reported for these materials. As a function of pressure, the etch rates reach a maximum value at 2 mTorr and then decrease as the pressure is increased to 10 mTorr. The GaN and AlN etch rates increase less than a factor of 2 as the microwave power is increased from 125 to 850 W whereas the InN etch rate increases by more than a factor of 3.5. The maximum etch rate for AlN obtained in this study is 1245 Å/min at a microwave power of 850 W, 1 mTorr pressure, and 225 W rf power. Atomic force microscopy is used to determine root-mean-square roughness as a function of etch conditions for GaN and InN and, while very smooth pattern transfer can be obtained for a wide range of plasma conditions for GaN, the smoothness of the etched InN surface is more sensitive to rf power, microwave power, and process pressure. The surface composition of the GaN is characterized using Auger spectroscopy and has shown that the Ga:N ratio increases with increasing rf power or microwave power. © 1995 American Vacuum Society

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:95-0515323

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">High rate electron cyclotron resonance etching of GaN, InN, and AlN</title>
<author>
<name sortKey="Shul, R J" uniqKey="Shul R">R. J. Shul</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Sandia National Laboratories, Albuquerque, New Mexico 87185</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
<wicri:cityArea>Sandia National Laboratories, Albuquerque</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Howard, A J" uniqKey="Howard A">A. J. Howard</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Sandia National Laboratories, Albuquerque, New Mexico 87185</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
<wicri:cityArea>Sandia National Laboratories, Albuquerque</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Pearton, S J" uniqKey="Pearton S">S. J. Pearton</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Floride</region>
</placeName>
<wicri:cityArea>Department of Materials Science and Engineering, University of Florida, Gainesville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Abernathy, C R" uniqKey="Abernathy C">C. R. Abernathy</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Floride</region>
</placeName>
<wicri:cityArea>Department of Materials Science and Engineering, University of Florida, Gainesville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Vartuli, C B" uniqKey="Vartuli C">C. B. Vartuli</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Floride</region>
</placeName>
<wicri:cityArea>Department of Materials Science and Engineering, University of Florida, Gainesville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Barnes, P A" uniqKey="Barnes P">P. A. Barnes</name>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>Department of Physics, Auburn University, Auburn, Alabama 36849</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Alabama</region>
</placeName>
<wicri:cityArea>Department of Physics, Auburn University, Auburn</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bozack, M J" uniqKey="Bozack M">M. J. Bozack</name>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>Department of Physics, Auburn University, Auburn, Alabama 36849</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Alabama</region>
</placeName>
<wicri:cityArea>Department of Physics, Auburn University, Auburn</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">95-0515323</idno>
<date when="1995-09">1995-09</date>
<idno type="stanalyst">PASCAL 95-0515323 AIP</idno>
<idno type="RBID">Pascal:95-0515323</idno>
<idno type="wicri:Area/Main/Corpus">01BE00</idno>
<idno type="wicri:Area/Main/Repository">01B738</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0734-211X</idno>
<title level="j" type="abbreviated">J. Vac. Sci. Technol. B</title>
<title level="j" type="main">Journal of Vacuum Science and Technology B</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium nitrides</term>
<term>Argon</term>
<term>Chemical composition</term>
<term>Chlorine</term>
<term>Electron cyclotron-resonance</term>
<term>Etching</term>
<term>Experimental study</term>
<term>Gallium nitrides</term>
<term>Hydrogen</term>
<term>Indium nitrides</term>
<term>Medium vacuum</term>
<term>Methane</term>
<term>Plasma</term>
<term>Power range 100-1000 W</term>
<term>Pressure dependence</term>
<term>Roughness</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude expérimentale</term>
<term>8160C</term>
<term>Aluminium nitrure</term>
<term>Argon</term>
<term>Composition chimique</term>
<term>Chlore</term>
<term>Résonance cyclotronique électronique</term>
<term>Gravure</term>
<term>Gallium nitrure</term>
<term>Hydrogène</term>
<term>Indium nitrure</term>
<term>Vide moyen</term>
<term>Méthane</term>
<term>Plasma</term>
<term>Domaine puissance 100-1000 W</term>
<term>Dépendance pression</term>
<term>Rugosité</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Chlore</term>
<term>Hydrogène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Electron cyclotron resonance etch rates of GaN, InN, and AlN are reported as a function of pressure, microwave power, and radio-frequency (rf) power in a Cl
<sub>2</sub>
/H
<sub>2</sub>
/CH
<sub>4</sub>
/Ar plasma at 170 °C. The etch rates for GaN and InN increase as a function of rf power. At 275 W, the etch rates reach maximum values of 2850 and 3840 Å/min, respectively. These are the highest etch rates reported for these materials. As a function of pressure, the etch rates reach a maximum value at 2 mTorr and then decrease as the pressure is increased to 10 mTorr. The GaN and AlN etch rates increase less than a factor of 2 as the microwave power is increased from 125 to 850 W whereas the InN etch rate increases by more than a factor of 3.5. The maximum etch rate for AlN obtained in this study is 1245 Å/min at a microwave power of 850 W, 1 mTorr pressure, and 225 W rf power. Atomic force microscopy is used to determine root-mean-square roughness as a function of etch conditions for GaN and InN and, while very smooth pattern transfer can be obtained for a wide range of plasma conditions for GaN, the smoothness of the etched InN surface is more sensitive to rf power, microwave power, and process pressure. The surface composition of the GaN is characterized using Auger spectroscopy and has shown that the Ga:N ratio increases with increasing rf power or microwave power. © 1995 American Vacuum Society</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0734-211X</s0>
</fA01>
<fA02 i1="01">
<s0>JVTBD9</s0>
</fA02>
<fA03 i2="1">
<s0>J. Vac. Sci. Technol. B</s0>
</fA03>
<fA05>
<s2>13</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>High rate electron cyclotron resonance etching of GaN, InN, and AlN</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SHUL (R. J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HOWARD (A. J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PEARTON (S. J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ABERNATHY (C. R.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>VARTULI (C. B.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BARNES (P. A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BOZACK (M. J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Sandia National Laboratories, Albuquerque, New Mexico 87185</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Physics, Auburn University, Auburn, Alabama 36849</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>2016-2021</s1>
</fA20>
<fA21>
<s1>1995-09</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>11992B</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© AIP</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>95-0515323</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of Vacuum Science and Technology B</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Electron cyclotron resonance etch rates of GaN, InN, and AlN are reported as a function of pressure, microwave power, and radio-frequency (rf) power in a Cl
<sub>2</sub>
/H
<sub>2</sub>
/CH
<sub>4</sub>
/Ar plasma at 170 °C. The etch rates for GaN and InN increase as a function of rf power. At 275 W, the etch rates reach maximum values of 2850 and 3840 Å/min, respectively. These are the highest etch rates reported for these materials. As a function of pressure, the etch rates reach a maximum value at 2 mTorr and then decrease as the pressure is increased to 10 mTorr. The GaN and AlN etch rates increase less than a factor of 2 as the microwave power is increased from 125 to 850 W whereas the InN etch rate increases by more than a factor of 3.5. The maximum etch rate for AlN obtained in this study is 1245 Å/min at a microwave power of 850 W, 1 mTorr pressure, and 225 W rf power. Atomic force microscopy is used to determine root-mean-square roughness as a function of etch conditions for GaN and InN and, while very smooth pattern transfer can be obtained for a wide range of plasma conditions for GaN, the smoothness of the etched InN surface is more sensitive to rf power, microwave power, and process pressure. The surface composition of the GaN is characterized using Auger spectroscopy and has shown that the Ga:N ratio increases with increasing rf power or microwave power. © 1995 American Vacuum Society</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A60C</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>8160C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Aluminium nitrure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Aluminium nitrides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Argon</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Argon</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Composition chimique</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Chemical composition</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Chlore</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Chlorine</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Résonance cyclotronique électronique</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Electron cyclotron-resonance</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Gravure</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Etching</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Gallium nitrure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Gallium nitrides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Hydrogène</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Hydrogen</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Indium nitrure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Indium nitrides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Vide moyen</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Medium vacuum</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Méthane</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Methane</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Plasma</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Plasma</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Domaine puissance 100-1000 W</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Power range 100-1000 W</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Dépendance pression</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Pressure dependence</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Rugosité</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Roughness</s0>
</fC03>
<fN21>
<s1>289</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>9519M0509</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 01B738 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 01B738 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:95-0515323
   |texte=   High rate electron cyclotron resonance etching of GaN, InN, and AlN
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024